Welcome to
Teaching + Learning Tuesdays

June 21, 2016 | 2:30PM

Please adjust your audio using the Audio Setup option under the Meeting menu.
Audio Setup Wizard

Welcome

The Adobe Connect Audio Wizard will help setup and tune your audio devices for use with Adobe Connect.

Click Next to proceed. If at any point your audio doesn't work as expected, click Help for troubleshooting tips.
Rethinking Everything:
Learning as the Constant to Disrupt Higher Education

Naomi R. Boyer, Ph.D.
Polling Question

What is your role?

A. Faculty
B. Staff
C. Administration
Polling Question
Rate your knowledge of competency based education (CBE):

A. Start from the beginning—I’m new to the game
B. Some knowledge—but not sure how it fits
C. Been involved with CBE in practice
D. Expert knowledge
E. Thought I knew but getting more confused by the day
Project Overview

Funding
Core Concepts
Institutional Context
Regional Need
Our Definitions and Assumptions

• Competency Based Education=CBE
• Units of learning aligned to skills or concepts
 • Not contact hours
 • Nor Carnegie credit hours
• Direct Assessment
 • Non instructor led
 • Not assessed by faculty
• Hybrid
 • Delivery: online/face-to-face
 • Combined traditional and CBE
 • Direct assessment and credit-based

• Improve learning outcomes & success
• Affordability
• Student mastery
• Flexibility
• Time to completion
• Empower the individual learner
The Shift to Competency-Based Education

Polk State College’s
• Modular
• Self-Paced
• Non-term
• Competency-based
• Open Lab
• Faculty Mentored
• Open-Entry / Open-Exit

Engineering Technology Degree
NSF ATE Funding

- Implement an OEOE program
- Build a collaborative relationship between the secondary system and the college
- Providing pathways to baccalaureate degrees
- Professional development
- Outreach initiatives

Inspired by the FVTC Electro-Mechanical Modular Semester-based Model
STUDENT DEMOGRAPHICS

ANNUAL UNDUPPLICATED HEADCOUNT: 16,490
DUAL ENROLLMENT HEADCOUNT: 2,997

PART-TIME STUDENTS
- 24%
- 76% **FULL-TIME STUDENTS**

ENROLLMENT BY AGE GROUP
- Younger than 20: 38%
- 20-24: 26%
- 25-34: 20%
- 35 and older: 16%
- **26 Average student age**

ANNUAL DEGREE COMPLETIONS
(SUMMER 2014, FALL 2015, SPRING 2015)

- **TOTAL OF 2,195**
- Certificates: 404
- BS/BAS: 331
- AA: 1,089
OUR SUCCESS INDICATORS *

- **20,500**
 Number of individuals served at Polk State Corporate College (2015)

- **91.68%**
 Job placement and continuing education rate

- **84.21%**
 Student success rate

- **63.26%**
 Student retention rate

- **32.86%**
 Completion rate (Fall 2010 cohort)

Started at Polk State, Accepted to FOUR state universities

*Fabian
 *'13 ASSOCIATE IN ARTS, POLK STATE COLLEGE
 *'15 BACHELOR OF ARTS, UNIVERSITY OF FLORIDA
 ADVERTISING INTERN, NEW YORK CITY*

* FLDOE, FETPIP and Florida Department of Economic Opportunity | ** 2014/15 Student Data | *** US Census Bureau: State and County Quick Facts 2013
Our Students in Depth

78% of our first-time-in-college students need academic support to succeed.

41.9% of our students receive need-based financial aid.

61% of our students are first generation-in-college students.

2x Polk State graduates’ initial annual wages are nearly twice the average annual wage for Polk County.

Graduating debt-free means I can put more money in his college fund.

Oscar
UNDECLARED, ’32

Vanessa
BACHELOR OF APPLIED SCIENCE IN SUPERVISION AND MANAGEMENT, ’14
LAKE WALES
<table>
<thead>
<tr>
<th></th>
<th>POLK STATE COLLEGE</th>
<th>Polk County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>36%</td>
<td>49%</td>
</tr>
<tr>
<td>Female</td>
<td>64%</td>
<td>51%</td>
</tr>
<tr>
<td>White</td>
<td>53%</td>
<td>62.8%</td>
</tr>
<tr>
<td>Black</td>
<td>18%</td>
<td>15.6%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>18%</td>
<td>19%</td>
</tr>
<tr>
<td>Other</td>
<td>11%</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

* FLDOE, FETPIP and Florida Department of Economic Opportunity | ** 2014/15 Student Data | *** US Census Bureau: State and County Quick Facts 2013
Industry Trends

• Need for more education/technical competency (especially in automation, bio-technology / biomedical device mfg skills, supply chain management, engineering and process technology, problem-solving skills, etc.)

• Evolving Business Models: Need agile/flexible production Break down silos between admin, management & production (teams)

• Generational Differences

• Need Real World (hands-on) Learning

Manufacturing TDI:
http://www.manufacturingtdi.com/Publications
Open Entry/Early Exit

Engineering Technology Program Demographic
How It Works
Curriculum and Policies
• Applied Engineering Degree
• Internship Opportunities
• Certification alignment (MSSC CPT, ASQ, AutoDesk...)
• Courses in:
 – Automation
 – Industrial Safety
 – CADD
 – Metrology
 – Quality, Lean and Six Sigma
 – Industrial PLC’s and Robotics
 – Fluid Power...
• College Credit for Industry Certification Articulation

Polk State ET Graduate Bryan Hogue on the job at Mosaic
Post-Traditional

• > 22 years of age
• Working
• Potential for shift & swing shift schedules
• Rapid Increase in needed job skills
• Child care responsibilities
• Veterans
• Training to Academic pathways
• Employer networking
The OEOE / CBE Solution

- Self-paced
- Learner centered
- Faculty mentored
- Competency-based
- Modular
- Non-term
- Hybrid
Non-term / Open Lab

OEOE
Start any day of the year (Open Entry)
Complete at your pace (Open Exit)
Individualized critical registration dates
Calculated based on the individual (not the term)
Drop (n+4)
Withdrawal (n+15)
End of “term” (n+35)

Open Lab
9:00am – 8:00pm Monday - Thursday
9:00am – 6:00pm Friday
Online Scheduling (Appointy)
General Education Courses: (Traditional Semester-based F2F, Online, or Hybrid)

Program Courses:
- Modular 1 cr.hr.
- Consistent Course Numbering
- Non-term
- Hybrid (Online in LMS and Required Hands-on in Open Lab)

42 x 1 cr.hr. Courses

<table>
<thead>
<tr>
<th>GENERAL EDUCATION and ENGINEERING TECHNOLOGY CORE COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL EDUCATION COURSES (18 credits)</td>
</tr>
<tr>
<td>ENC 1101 College Composition I 3 cr.hr.</td>
</tr>
<tr>
<td>Natural Science requirement 3</td>
</tr>
<tr>
<td>MAC 1105 College Algebra 3</td>
</tr>
<tr>
<td>Social Science requirement 3-4</td>
</tr>
<tr>
<td>Humanities requirement 3</td>
</tr>
<tr>
<td>Health Science requirement 2-3</td>
</tr>
<tr>
<td>ENGINEERING TECHNOLOGY CORE (18 credits)</td>
</tr>
<tr>
<td>ETD 1320C-1 Computer Aided Drafting 1 cr.hr.</td>
</tr>
<tr>
<td>ETD 1320C-2 Computer Aided Drafting 1</td>
</tr>
<tr>
<td>ETD 1320C-3 Computer Aided Drafting 1</td>
</tr>
<tr>
<td>EET 1084C-1 Intro to Electronics (▲) 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADVANCED MANUFACTURING SPECIALIZATION COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQUIRED TECHNICAL COURSES (13 credits)</td>
</tr>
<tr>
<td>ETS 1542C-1 Intro to PLC’s (♦) 1 cr.hr.</td>
</tr>
<tr>
<td>ETS 1542C-2 Intro to PLC’s (♦) 1</td>
</tr>
<tr>
<td>ETS 1542C-3 Intro to PLC’s (♦) 1</td>
</tr>
<tr>
<td>ETS 1511C-1 Motors and Controls (♦) 1</td>
</tr>
<tr>
<td>ETS 1511C-2 Motors and Controls (♦) 1</td>
</tr>
<tr>
<td>ETS 1511C-3 Motors and Controls (♦) 1</td>
</tr>
<tr>
<td>ETI 1622C-1 Lean Mfg and Six Sigma 1</td>
</tr>
<tr>
<td>ETI 1622C-2 Lean Mfg and Six Sigma 1</td>
</tr>
<tr>
<td>ETI 1622C-3 Lean Mfg and Six Sigma 1</td>
</tr>
<tr>
<td>ETM 2315C-1 Hydraulics and Pneumatics (♦) 1</td>
</tr>
<tr>
<td>ETM 2315C-2 Hydraulics and Pneumatics (♦) 1</td>
</tr>
<tr>
<td>ETM 2315C-3 Hydraulics and Pneumatics (♦) 1</td>
</tr>
<tr>
<td>ETM 2315C-4 Hydraulics and Pneumatics (♦) 1</td>
</tr>
<tr>
<td>TECHNICAL ELECTIVES (Choose 11 credits from below)</td>
</tr>
<tr>
<td>ETS 1540C-1 Ind. Appl. of PLCs and Robotics (♦) 1 cr.hr.</td>
</tr>
<tr>
<td>ETS 1540C-2 Ind. Appl. of PLCs and Robotics (♦) 1</td>
</tr>
<tr>
<td>ETS 1540C-3 Ind. Appl. of PLCs and Robotics (♦) 1</td>
</tr>
<tr>
<td>ETS 1535C-1 Automated Process Control (♦) 1</td>
</tr>
<tr>
<td>ETS 1535C-2 Automated Process Control (♦) 1</td>
</tr>
<tr>
<td>ETS 1535C-3 Automated Process Control (♦) 1</td>
</tr>
<tr>
<td>ETI 1181C-1 Quality Systems & Workplace Dynamics 1</td>
</tr>
<tr>
<td>ETI 1181C-2 Quality Systems & Workplace Dynamics 1</td>
</tr>
<tr>
<td>ETI 1539C-1 Instrumentation Systems Safety 1</td>
</tr>
<tr>
<td>ETI 1539C-2 Instrumentation Systems Safety 1</td>
</tr>
<tr>
<td>ETI 1539C-3 Instrumentation Systems Safety 1</td>
</tr>
<tr>
<td>ETI 1949 Manufacturing Internship 2</td>
</tr>
<tr>
<td>ETI 1931 Special Topics in Modern Manufacturing 3</td>
</tr>
<tr>
<td>MAN 2500 Operations Management 3</td>
</tr>
<tr>
<td>MAC 2233 Applied Calculus I 3</td>
</tr>
<tr>
<td>CGS 1510C Spreadsheet Fundamentals 3</td>
</tr>
<tr>
<td>CGS 1061C Intro to Computers 3</td>
</tr>
<tr>
<td>ENC 2210 Technical Writing 3</td>
</tr>
</tbody>
</table>
Traditional Courses (3-4 cr.hr.) were mapped to 1 cr.hr. modular CBE courses

1 cr.hr. modular CBE courses were organized into logical topical completion blocks

Curricula source material was identified for each new modular course
Course Resources

Unit Outline
• Objectives
• Competencies
• Key Terms

Course Structure
• 1 Credit Hour (Unit)
• 3 Modules (typical)
 • Online theory
 • Hands-on practical
 • Module Quiz
• Unit Assessment / Exam

Module Study Guide
1. Read textbook pages
2. View video
3. Perform Lab activities
4. Complete worksheet(s)
5. View multimedia materials
 a. Learning Objects
 b. Circuit Challenge
 c. MultiSim
6. Demonstration
7. Discussion Board
8. Last assignment - Take examination

(Desire2Learn LMS)
How does this format work?
How does this format work?
Policies

• 5 Week Window for individual course (1 cr.hr.) completion
 – Open Exit becomes Early Exit (OEEE)
 – Designed to deal with student procrastination

• Finishing Early
 – Grades Roll Nightly
 – Students can register for the next course(s) after 24 hours

• Standard penalties for not completing courses
Outcomes and Progress

Successes
Student Outcomes
Challenges
What’s next
Current ET-OEEE Profile (2015-16)

Student Enrollment
- 142 students enrolled with ET Program Objective
- 62 students enrolled in technical courses

Age
- 43.8% (<20), 20.8% (20-24), 14.6% (25-29), 18.8% (30-39), 50+ (2.1%)

Ethnicity
- 55.6% (White), 22.5% (Hispanic), 13.4% (Black), 2.1% (Multi),
 2.1% (Asian), 2.8% (Not Reported), 1.4% (American Indian)

Gender
- 7.0% (Female), 92.3% (Male)

Financial Support
- 45.8% receive aid, X % are awarded veterans benefits
Program Completion and Trends (2015-16)

Course Enrollment information
- Mean- 3.6 Technical Credits
- Mean- 12.3 Other Credits
- Mean- 5.2 Dev Ed Credits
- 35% of Engineering Technology students still enrolled after 3 terms

Time to course completion
- Mean- Course Duration 4 weeks (1 credit)

Course success
- Mean- GPA across courses 2.43

Program Completion
- 14 students completed the program
- 9 students (64%) complete within 3 terms*

*Includes 2013 (prior to program data)
Who are Polk State College ET students....

WORFORCE DATA UPON PROGRAM ENTRY ENGINEERING TECHNOLOGY

- Employed Yes: 90%
- Employed No: 10%
- Full-Time: 55%
- Part-Time: 25%
- Position Related To ET Yes: 40%
- Position Related To ET No: 60%
- Selecting ET?: 35%
- Flexible Class Schedule and Delivery: 70%
- ET Provides Better Career Opportunities: 90%
- I Am Good Making Things, Like to Improve My Tech Skills: 80%
Successes: Student Enrollment

Engineering Technology

<table>
<thead>
<tr>
<th>Year</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2012</td>
<td>14</td>
</tr>
<tr>
<td>Spring 2013</td>
<td>86</td>
</tr>
<tr>
<td>Fall 2013</td>
<td>112</td>
</tr>
<tr>
<td>Spring 2014</td>
<td>117</td>
</tr>
<tr>
<td>Fall 2014</td>
<td>130</td>
</tr>
<tr>
<td>Spring 2015</td>
<td>86</td>
</tr>
<tr>
<td>Fall 2015</td>
<td>99</td>
</tr>
<tr>
<td>Spring 2016</td>
<td>92</td>
</tr>
</tbody>
</table>
Successes: Acceleration

Mean completion time for a 1 cr.hr. course
Challenges: Students

• No structured lectures
• Undisciplined learners (procrastination)
• Group learners
 – Encourage collaboration
• Camaraderie
• Comfort with virtual discussions
Challenges: Instructors

• New loading model due to open lab & no scheduled courses
• Required to know all course content (mitigated by online scheduling system)
• Course development & labs take longer to create
• Poorly written courses have a large impact (rough carpenter vs. finish carpenter)
• Asynchronous Student Monitoring
• Turn around on EVERYTHING must be quicker
Student Appointments: 2014-2015

Appointy Report of Lab Usage Spring, 2016

of Appointments

of Users

Legend:
- # of Appointments
- # of Users
Challenges: Administration

• **Management**
 – Total Acceptance Necessary
 – Not Understanding the Operation / Complexity
 – Wide Areas of Impact

• **Systems**
 – Registration - Personal/Individualized unique dates
 – Financial Aid [Member of the DOE: Experimental Sites]
 • Personal/Individualized unique calculations based on start data
 • Complex and manual tracking (FA and instructor)
 • [US-DOE Reference Guide for those in experiments](#)
 – Veterans’ Benefits
 • VA benefits have same challenges/impacts on BAH benefit
 – Advising – Greater faculty responsibility
Accreditation
Southern Association of Colleges and Schools
Commission on Colleges

Initial Issues
• Unclear definitions
• Federal approval requirements with no direction
• Expressed concerns
 • Instructor student interaction
 • Content/competency articulations
 • Time/credit equivalents to degree award (25% rule)

Current Status
• Policy statement
 • Experimental Sites guidelines
 • Screening Form
 • Program approval submissions
 • CBE Design and Implementation Documentation

We are Polk.
Successes: Things Accomplished

• Shifted to 1 credit hour OEEE in Fall 2014
 – Offered 22 of the 1 cr.hr. Program Courses

• Shifted advising/mentoring to program faculty

• Added a registration hold that had to be cleared by the program

• Financial Aid & Veterans Benefits determination & administration were time consuming and complex

• Bookstore

• OEEE rolled across the semester break into Spring 2015
 – Offered all 42 1 cr.hr. Program Courses

• Registration programming issues continued to be refined
We believe that one of our most important assets is our highly skilled workforce. But finding workers with the advanced manufacturing skills needed in this industry is not easy...

...the OEEE Engineering Technology program addresses the need for employees with the technological skills to operate, maintain, and repair complex manufacturing equipment while providing a format that is more accessible to the working learner, allows for self-paced learning, and shifts the instructor/student relationship to one of mentoring rather than lecture.

Based on these tenets, we would encourage other colleges with technical program to explore competency-based student-centered learning models.
U.S. Dept. of Educ. – ExSites

Experimental Sites Initiatives

Competency Based Education ExSites:

<table>
<thead>
<tr>
<th>University/College Name</th>
<th>University/College Name</th>
<th>University/College Name</th>
<th>University/College Name</th>
<th>University/College Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Sentinel</td>
<td>Colorado State University - Global Campus</td>
<td>Ivy Tech Community College</td>
<td>Mount Washington College</td>
<td>Richard Bland College</td>
</tr>
<tr>
<td>University</td>
<td></td>
<td></td>
<td></td>
<td>University of Louisville</td>
</tr>
<tr>
<td>Austin Community College District</td>
<td>Danville Community College</td>
<td>Jefferson Community and Technical College</td>
<td>National American University</td>
<td>Rio Salado College</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>University of New England</td>
</tr>
<tr>
<td>Big Sandy Community and Technical College</td>
<td>Davis Applied Technology College</td>
<td>Jones County Junior College</td>
<td>Northern Arizona University</td>
<td>Salt Lake Community College</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>University of Phoenix</td>
</tr>
<tr>
<td>Brandman University</td>
<td>El Centro College</td>
<td>Kaplan University</td>
<td>Northern Essex Community College</td>
<td>Somerset Community College</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>University of Wisconsin Colleges</td>
</tr>
<tr>
<td>Broward College</td>
<td>Elizabethtown Community and Technical College</td>
<td>Lincoln Land Community College</td>
<td>Northern Virginia Community College</td>
<td>Southern New Hampshire University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>University of Wisconsin-Milwaukee</td>
</tr>
<tr>
<td>Bryant & Stratton College</td>
<td>Fielding Graduate University</td>
<td>Lipscomb University</td>
<td>Polk State College</td>
<td>The New School</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>West Kentucky Community and Technical College</td>
</tr>
<tr>
<td>Capella University</td>
<td>Francis Tuttle Tech Center</td>
<td>Miami Dade College</td>
<td>Rasmussen College</td>
<td>Trident University International</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Western Kentucky University</td>
</tr>
<tr>
<td>Central Arizona College</td>
<td>Indiana Wesleyan University</td>
<td>Monroe Community College</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What’s Next?

• Online lab simulations
• General ed CBE course options
• Prior learning assessment upon program entry
• Mastery thresholds
• Program expansion, cost sharing for labs, further program distribution
• Developmental education concurrent CBE courses
The Team

- Dr. Eric Roe, Ph.D. – P.I.
- Terry Bartelt – Co-PI
- Dr. Naomi Boyer – Co-PI
- John Small – Co-PI
- Robert Frank – Project Manager / Lead Instructor / Curriculum Dev.
- Lara Sharp – Project Coordinator / Instructor / Curriculum & Lab Dev.
- Jonathan Little – Project Coordinator / Lab Assistant
- Dr. Christopher Schilling – Adjunct Instructor / Curriculum & Lab Dev.
- Kathy Bucklew – Registrar / Director of Student Enrollment Services
- Marcia Conliffe – Director of Student Financial Services
- Patricia Jones – District Dean of Academic Affairs
- Donald Painter – Dean of Academic Affairs

Funded, in part, by a grant from the National Science Foundation.
DUE-0501626
Upcoming TLT Sessions

July 19, 2016 at 2:30 pm – Reverse Transfer and Articulation: Strategies for Policy and Implementation
Lexi Anderson, Ed.D., Policy Analyst, Education Commission of the States
Carl Einhaus, Director of Student Affairs, Colorado Department of Higher Education

August 16, 2016 at 2:30 pm – Classroom Safety and Behavior Management
Dr. Christopher Hall, Dean of Business and Public Service, Central Carolina Technical College

September 20, 2016 at 2:30 pm – Free Educational Resources from SCETV
Donna Thompson, Educational Technology Instructor, SC Educational Television (SCETV)

www.sctechsystem.edu/tlt
Give us your feedback

Questions for Dr. Naomi Boyer, June 2016 TLT Session

Questions Submitted by Participants:

1. Does the presenter believe about rubrics being used to evaluate competency? What other methods can be used? [Challenges: Instructors- Slide 34]
2. What significant changes have been encountered in competency-based education in the past twenty-five years? [Our definitions and assumptions-Slide 5, basic overview]
3. What is it? How do you implement lab work with limited resources in a hybrid class? [Our definitions and assumptions-Slide 5, The shift to CBE-slide 6, Non-Term/Open lab- Slide 19]
5. No specific questions at this time. Interested in seeing how CBE programs are structured and managed. [Polk State College format included in the presentation]
6. No question at the moment; just what to know about competency-based education and its effectiveness. [Polk State College format included in the presentation]
7. How does this work with the requirement to issue grades in a semester-based format? [How does it work-Slides 18-25]
8. Have there been any significant shifts and/or changes in our educational policies to meet the needs of students transitioning from being a high school graduate to being prepared for college and/or a career? [Challenges-Slides 32-38]
9. What tools or metrics are used to measure students' competency? [Instructor Challenges-Slide 34]
10. How is the student's class schedule arranged? Are there opportunities for work experience while enrolled? Are students involved in other aspects of college life, such as clubs? [How does it work-Slides 18-25; Student challenges-slides 32]
11. How does it work with the credit hour definition? [42 x1 cr.hr. courses-slide 20 and modularizing courses-slide 21]
12. SC Technical College policies and procedures - do they need to be updated? DOE and Financial Aid - how do we work around the rules that we all live by? What changes are coming based on the pilot projects that the DOE has been running with competency-based education in other states? [Policies-Slide 25; Challenges-Administration- slide 36; US Dept of Ed ExSites-Slide 40]
13. What is the new approach here? [Open dialogue at the end. You tell me 😊]
14. Integration of CBE into traditional educational frameworks and the challenges of providing appropriate resources needed to support such efforts. [Challenges-Slides 32-38]

15. Competency Based Education - How is it working for you? (Student feedback, College feedback). [Current Data and Feedback- Slides 27-31]

16. What are the best actions to implementing techniques? [How does it work-Slides 18-25]

17. What advantages and benefits has the school realized and what advantages and benefits have the students realized? [Current Data and Feedback- Slides 27-31]

18. I am heading up a task force to study flexibility. I want to find out what other colleges are doing to make their programs more flexible for students. [How does it work-Slides 18-25]

19. How do you apply this concept to any given course? Can it be applied to virtually ANY course? [Next steps 41; How does it work-Slides 18-25]

20. How does one define and quantify competency-based education? In closing, how does one sell "the art of competency-based education" to some students who are not interested in reading for pleasure? How does one encourage (some of our students) who are motivated by points and not the joy of learning? [Open Dialogue; How does it work-Slides 18-25]

21. My understanding is that competency-based strategies provide flexibility in the way that credit can be earned or awarded, and provide students with personalized learning opportunities. How then, is this accomplished with students who come from extremely diverse socio-economic backgrounds, who may not have yet experienced academic successes, but rather, have more experiences in failure? [Open Dialogue; How does it work-Slides 18-25]

22. How might it apply to my discipline of art history in particular and the teaching of humanities in general? [How does it work-Slides 18-25]

23. How can we use the competency-based education concept to encourage assignment collaborations between faculty and librarians? [Challenges: Instructors- Slide 34]